Your browser doesn't support javascript.
loading
Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors.
Shao, Shuo; Mao, Ning; Liu, Wenjuan; Cui, Jingjing; Xue, Xiaoli; Cheng, Jingfeng; Zheng, Ning; Wang, Bin.
Afiliación
  • Shao S; Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
  • Mao N; Department of Radiology, Jining No. 1 People's Hospital, Jining, Shandong, China.
  • Liu W; Department of Radiology, Yantai Yuhuangding Hospital, the Affiliated Hospital of Qingdao University, Yantai, Shandong, China.
  • Cui J; Department of Radiology, Jining No. 1 People's Hospital, Jining, Shandong, China.
  • Xue X; Huiying Medical Technology Co., Ltd. Beijing, China.
  • Cheng J; Department of Radiology, Jining No. 1 People's Hospital, Jining, Shandong, China.
  • Zheng N; Department of Radiology, Jining No. 1 People's Hospital, Jining, Shandong, China.
  • Wang B; Department of Radiology, Jining No. 1 People's Hospital, Jining, Shandong, China.
J Xray Sci Technol ; 28(4): 799-808, 2020.
Article en En | MEDLINE | ID: mdl-32538891
OBJECTIVE: To evaluate the utility of radiomics analysis for differentiating benign and malignant epithelial salivary gland tumors on diffusion-weighted imaging (DWI). METHODS: A retrospective dataset involving 218 and 51 patients with histology-confirmed benign and malignant epithelial salivary gland tumors was used in this study. A total of 396 radiomic features were extracted from the DW images. Analysis of variance (ANOVA) and least-absolute shrinkage and selection operator regression (LASSO) were used to select optimal radiomic features. The selected features were used to build three classification models namely, logistic regression method (LR), support vector machine (SVM), and K-nearest neighbor (KNN) by using a five-fold cross validation strategy on the training dataset. The diagnostic performance of each classification model was quantified by receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) in the training and validation datasets. RESULTS: Eight most valuable features were selected by LASSO. LR and SVM models yielded optimally diagnostic performance. In the training dataset, LR and SVM yielded AUC values of 0.886 and 0.893 via five-fold cross validation, respectively, while KNN model showed relatively lower AUC (0.796). In the testing dataset, a similar result was found, where AUC values for LR, SVM, and KNN were 0.876, 0.870, and 0.791, respectively. CONCLUSIONS: Classification models based on optimally selected radiomics features computed from DW images present a promising predictive value in distinguishing benign and malignant epithelial salivary gland tumors and thus have potential to be used for preoperative auxiliary diagnosis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de las Glándulas Salivales / Interpretación de Imagen Radiográfica Asistida por Computador / Imagen de Difusión por Resonancia Magnética Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Xray Sci Technol Asunto de la revista: RADIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de las Glándulas Salivales / Interpretación de Imagen Radiográfica Asistida por Computador / Imagen de Difusión por Resonancia Magnética Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Xray Sci Technol Asunto de la revista: RADIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: China