Your browser doesn't support javascript.
loading
Accurate Prediction of GPCR Ligand Binding Affinity with Free Energy Perturbation.
Deflorian, Francesca; Perez-Benito, Laura; Lenselink, Eelke B; Congreve, Miles; van Vlijmen, Herman W T; Mason, Jonathan S; Graaf, Chris de; Tresadern, Gary.
Afiliación
  • Deflorian F; Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom.
  • Perez-Benito L; Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
  • Lenselink EB; Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300, RA, The Netherlands.
  • Congreve M; Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom.
  • van Vlijmen HWT; Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
  • Mason JS; Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom.
  • Graaf C; Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom.
  • Tresadern G; Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
J Chem Inf Model ; 60(11): 5563-5579, 2020 11 23.
Article en En | MEDLINE | ID: mdl-32539374
ABSTRACT
The computational prediction of relative binding free energies is a crucial goal for drug discovery, and G protein-coupled receptors (GPCRs) are arguably the most important drug target class. However, they present increased complexity to model compared to soluble globular proteins. Despite breakthroughs, experimental X-ray crystal and cryo-EM structures are challenging to attain, meaning computational models of the receptor and ligand binding mode are sometimes necessary. This leads to uncertainty in understanding ligand-protein binding induced changes such as, water positioning and displacement, side chain positioning, hydrogen bond networks, and the overall structure of the hydration shell around the ligand and protein. In other words, the very elements that define structure activity relationships (SARs) and are crucial for accurate binding free energy calculations are typically more uncertain for GPCRs. In this work we use free energy perturbation (FEP) to predict the relative binding free energies for ligands of two different GPCRs. We pinpoint the key aspects for success such as the important role of key water molecules, amino acid ionization states, and the benefit of equilibration with specific ligands. Initial calculations following typical FEP setup and execution protocols delivered no correlation with experiment, but we show how results are improved in a logical and systematic way. This approach gave, in the best cases, a coefficient of determination (R2) compared with experiment in the range of 0.6-0.9 and mean unsigned errors compared to experiment of 0.6-0.7 kcal/mol. We anticipate that our findings will be applicable to other difficult-to-model protein ligand data sets and be of wide interest for the community to continue improving FE binding energy predictions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores Acoplados a Proteínas G Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores Acoplados a Proteínas G Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2020 Tipo del documento: Article