Your browser doesn't support javascript.
loading
Examination of microcystin neurotoxicity using central and peripheral human neurons.
Klima, Stefanie; Suciu, Ilinca; Hoelting, Lisa; Gutbier, Simon; Waldmann, Tanja; Dietrich, Daniel R; Leist, Marcel.
Afiliación
  • Klima S; In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany.
  • Suciu I; Cooperative doctorate college InViTe, University of Konstanz, Konstanz, Germany.
  • Hoelting L; In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany.
  • Gutbier S; Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
  • Waldmann T; In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany.
  • Dietrich DR; In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany.
  • Leist M; In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany.
ALTEX ; 38(1): 73-81, 2021.
Article en En | MEDLINE | ID: mdl-32591837
Microcystins (MC) are a group of cyanobacterial toxins that comprises MC-LF and other cyclic heptapeptides, best known as potent hepatotoxicants. Cell culture and epidemiological studies suggest that MC might also affect the nervous system when there is systemic exposure, e.g., via drinking water or food. We asked whether in vitro studies with human neurons could provide estimates on the neurotoxicity hazard of MC-LF. First, we used LUHMES neurons, a well-established test system for neurotoxicants and neuropathological processes. These central nervous system cells express OATP1A2, a presumed carrier of MC-LF, and we observed selective neurite toxicity in the µM range (EC20 = 3.3 µM ≈ 3.3 µg/mL). Transcriptome changes pointed towards attenuated cell maintenance and biosynthetic processes. Prolonged exposure for up to four days did not increase toxicity. As a second model, we used human dorsal root ganglia-like neurons. These peripheral nervous system cells represent parts of the nervous system not protected by the blood-brain barrier in humans. Toxicity was observed in a similar concentration range (EC20 = 7.4 µM). We conclude that MC-LF poses a potential neurotoxic hazard in humans. The adverse effect concentrations observed here were orders of magnitude higher than those presumed to be encountered after normal nutritional or environmental exposure. However, the low µM concentrations found to be toxic are close to levels that may be reached after very excessive algae supplement intake.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microcistinas / Células-Madre Neurales Límite: Humans Idioma: En Revista: ALTEX Asunto de la revista: MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microcistinas / Células-Madre Neurales Límite: Humans Idioma: En Revista: ALTEX Asunto de la revista: MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Alemania