Your browser doesn't support javascript.
loading
Evaluation of population stratification adjustment using genome-wide or exonic variants.
Chen, Yuning; Peloso, Gina M; Liu, Ching-Ti; DeStefano, Anita L; Dupuis, Josée.
Afiliación
  • Chen Y; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.
  • Peloso GM; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.
  • Liu CT; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.
  • DeStefano AL; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.
  • Dupuis J; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.
Genet Epidemiol ; 44(7): 702-716, 2020 10.
Article en En | MEDLINE | ID: mdl-32608112
Population stratification may cause an inflated type-I error and spurious association when assessing the association between genetic variations with an outcome. Many genetic association studies are now using exonic variants, which captures only 1% of the genome, however, population stratification adjustments have not been evaluated in the context of exonic variants. We compare the performance of two established approaches: principal components analysis (PCA) and mixed-effects models and assess the utility of genome-wide (GW) and exonic variants, by simulation and using a data set from the Framingham Heart Study. Our results illustrate that although the PCs and genetic relationship matrices computed by GW and exonic markers are different, the type-I error rate of association tests for common variants with additive effect appear to be properly controlled in the presence of population stratification. In addition, by considering single nucleotide variants (SNVs) that have different levels of confounding by population stratification, we also compare the power across multiple association approaches to account for population stratification such as PC-based corrections and mixed-effects models. We find that while these two methods achieve a similar power for SNVs that have a low or medium level of confounding by population stratification, mixed-effects model can reach a higher power for SNVs highly confounded by population stratification.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimorfismo de Nucleótido Simple / Estudio de Asociación del Genoma Completo / Estudios de Asociación Genética / Genética de Población / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimorfismo de Nucleótido Simple / Estudio de Asociación del Genoma Completo / Estudios de Asociación Genética / Genética de Población / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2020 Tipo del documento: Article