Your browser doesn't support javascript.
loading
Realizing a ferroelectric state and high pyroelectric performance in antiferroelectric-oxide composites.
Li, Ling; Fang, Di; Wang, Rui-Xue; Shen, Meng; Zhang, Haibo; Tang, Yue-Feng; Zhang, Shan-Tao.
Afiliación
  • Li L; National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanji
  • Fang D; National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanji
  • Wang RX; National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanji
  • Shen M; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Zhang H; School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Tang YF; National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanji
  • Zhang ST; National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanji
Dalton Trans ; 49(28): 9728-9734, 2020 Jul 21.
Article en En | MEDLINE | ID: mdl-32613984
ABSTRACT
We report a robust room temperature ferroelectric (FE) state in (1 - x)Pb0.99Nb0.02[(Zr0.57Sn0.43)0.933Ti0.067]0.98O3-xZnO ((1 - x)PNZST-xZnO) composites, where PNZST shows a predominant antiferroelectric (AFE) nature due to ZnO-induced internal strain. Upon heating, a FE-AFE transition occurs and generates high pyroelectric performance. The composite with x = 0.1 shows a peak pyroelectric coefficient of p = 2450.7 × 10-4 C m-2 K-1 and figures of merit of current responsivity Fi = 926.9 × 10-10 m V-1, voltage responsivity Fv = 1334.3 × 10-2 m2 C-1, and detectivity Fd = 1194.8 × 10-5 Pa-1/2, which are about two orders of magnitude higher than those of most perovskite pyroelectric oxides. More interestingly, the FE-AFE transition temperature, i.e., the temperature corresponding to peak pyroelectric performance, is tunable in a wide temperature range from 30 °C to 65 °C. This work not only provides a promising material candidate for high performance pyroelectric devices, but also an alternative idea to develop ferroelectric and pyroelectric properties based on antiferroelectric materials.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article