Your browser doesn't support javascript.
loading
Correction of cilia structure and function alleviates multi-organ pathology in Bardet-Biedl syndrome mice.
Husson, Hervé; Bukanov, Nikolay O; Moreno, Sarah; Smith, Mandy M; Richards, Brenda; Zhu, Cheng; Picariello, Tyler; Park, Hyejung; Wang, Bing; Natoli, Thomas A; Smith, Laurie A; Zanotti, Stefano; Russo, Ryan J; Madden, Stephen L; Klinger, Katherine W; Modur, Vijay; Ibraghimov-Beskrovnaya, Oxana.
Afiliación
  • Husson H; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Bukanov NO; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Moreno S; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Smith MM; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Richards B; Translational Sciences, Sanofi, Framingham, MA 01701, USA.
  • Zhu C; Translational Sciences, Sanofi, Framingham, MA 01701, USA.
  • Picariello T; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Park H; Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA.
  • Wang B; Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA.
  • Natoli TA; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Smith LA; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Zanotti S; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Russo RJ; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
  • Madden SL; Translational Sciences, Sanofi, Framingham, MA 01701, USA.
  • Klinger KW; Translational Sciences, Sanofi, Framingham, MA 01701, USA.
  • Modur V; Rare Diseases Development, Sanofi, Cambridge, MA 02142, USA.
  • Ibraghimov-Beskrovnaya O; Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA.
Hum Mol Genet ; 29(15): 2508-2522, 2020 08 29.
Article en En | MEDLINE | ID: mdl-32620959
Bardet-Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2-/- cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS. Consequently, we tested whether BBS pathology in Bbs2-/- mice can be reversed by targeting the underlying ciliary defect via reduction of GSL metabolism. Inhibition of GSL synthesis with the glucosylceramide synthase inhibitor Genz-667161 decreases the obesity, liver disease, retinal degeneration and olfaction defect in Bbs2-/- mice. These effects are secondary to preservation of ciliary structure and signaling, and stimulation of cellular differentiation. In conclusion, reduction of GSL metabolism resolves the multi-organ pathology of Bbs2-/- mice by directly preserving ciliary structure and function towards a normal phenotype. Since this approach does not rely on the correction of the underlying genetic mutation, it might translate successfully as a treatment for other ciliopathies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas / Cilios / Síndrome de Bardet-Biedl / Ciliopatías Límite: Animals Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas / Cilios / Síndrome de Bardet-Biedl / Ciliopatías Límite: Animals Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos