Your browser doesn't support javascript.
loading
Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles.
Tahir, Mukarram A; Guven, Zekiye P; Arriaga, Laura R; Tinao, Berta; Yang, Yu-Sang Sabrina; Bekdemir, Ahmet; Martin, Jacob T; Bhanji, Alisha N; Irvine, Darrell; Stellacci, Francesco; Alexander-Katz, Alfredo.
Afiliación
  • Tahir MA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142.
  • Guven ZP; Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.
  • Arriaga LR; Department of Theoretical Condensed Matter Physics, Autonoma University of Madrid, 28049 Madrid, Spain; lrarriaga@quim.ucm.es aalexand@mit.edu.
  • Tinao B; Department of Theoretical Condensed Matter Physics, Autonoma University of Madrid, 28049 Madrid, Spain.
  • Yang YS; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Bekdemir A; Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.
  • Martin JT; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Bhanji AN; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142.
  • Irvine D; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142.
  • Stellacci F; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Alexander-Katz A; Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.
Proc Natl Acad Sci U S A ; 117(31): 18470-18476, 2020 08 04.
Article en En | MEDLINE | ID: mdl-32690682
ABSTRACT
Lipid membrane fusion is an essential process for a number of critical biological functions. The overall process is thermodynamically favorable but faces multiple kinetic barriers along the way. Inspired by nature's engineered proteins such as SNAP receptor [soluble N-ethylmale-imide-sensitive factor-attachment protein receptor (SNARE)] complexes or viral fusogenic proteins that actively promote the development of membrane proximity, nucleation of a stalk, and triggered expansion of the fusion pore, here we introduce a synthetic fusogen that can modulate membrane fusion and equivalently prime lipid membranes for calcium-triggered fusion. Our fusogen consists of a gold nanoparticle functionalized with an amphiphilic monolayer of alkanethiol ligands that had previously been shown to fuse with lipid bilayers. While previous efforts to develop synthetic fusogens have only replicated the initial steps of the fusion cascade, we use molecular simulations and complementary experimental techniques to demonstrate that these nanoparticles can induce the formation of a lipid stalk and also drive its expansion into a fusion pore upon the addition of excess calcium. These results have important implications in general understanding of stimuli-triggered fusion and the development of synthetic fusogens for biomedical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Membrana Celular / Calcio / Nanopartículas del Metal / Oro / Membrana Dobles de Lípidos Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Membrana Celular / Calcio / Nanopartículas del Metal / Oro / Membrana Dobles de Lípidos Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article