Your browser doesn't support javascript.
loading
Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation.
Xiao, Ya-Fang; Xiang, Chenyang; Li, Shengliang; Mao, Cong; Chen, Haoting; Chen, Jia-Xiong; Tian, Shuang; Cui, Xiao; Wan, Yingpeng; Huang, Zhongming; Li, Xiaozhen; Zhang, Xiao-Hong; Guo, Weisheng; Lee, Chun-Sing.
Afiliación
  • Xiao YF; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
  • Xiang C; Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China.
  • Li S; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
  • Mao C; Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China.
  • Chen H; Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China.
  • Chen JX; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
  • Tian S; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
  • Cui X; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
  • Wan Y; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
  • Huang Z; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
  • Li X; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
  • Zhang XH; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
  • Guo W; Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China.
  • Lee CS; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
Small ; 16(34): e2002672, 2020 08.
Article en En | MEDLINE | ID: mdl-32697430
ABSTRACT
Multi-modality imaging-guided cancer therapy is considered as a powerful theranostic platform enabling simultaneous precise diagnosis and treatment of cancer. However, recently reported multifunctional systems with multiple components and sophisticate structures remain major obstacles for further clinical translation. In this work, a single-photomolecular theranostic nanoplatform is fabricated via a facile nanoprecipitation strategy. By encapsulating a semiconductor oligomer (IT-S) into an amphiphilic lipid, water-dispersible IT-S nanoparticles (IT-S NPs) are prepared. The obtained IT-S NPs have a very simple construction and possess ultra-stable near-infrared (NIR) fluorescence (FL)/photoacoustic (PA) dual-modal imaging and high photothermal conversion efficiency of 72.3%. Accurate spatiotemporal distribution profiles of IT-S NPs are successfully visualized by NIR FL/PA dual-modal imaging. With the comprehensive in vivo imaging information provided by IT-S NPs, tumor photothermal ablation is readily realized under precise manipulation of laser irradiation, which greatly improves the therapeutic efficacy without any obvious side effects. Therefore, the IT-S NPs allow high tumor therapeutic efficacy under the precise guidance of FL/PA imaging techniques and thus hold great potential as an effective theranostic platform for future clinical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas / Técnicas Fotoacústicas / Hipertermia Inducida / Neoplasias Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas / Técnicas Fotoacústicas / Hipertermia Inducida / Neoplasias Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article