Your browser doesn't support javascript.
loading
Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in Saccharomyces cerevisiae.
De Palma, Antonella; Fanelli, Giulia; Cretella, Elisabetta; De Luca, Veronica; Palladino, Raffaele Antonio; Panzeri, Valentina; Roffia, Valentina; Saliola, Michele; Mauri, Pierluigi; Filetici, Patrizia.
Afiliación
  • De Palma A; Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Segrate, Italy.
  • Fanelli G; Institute of Molecular Biology and Pathology/CNR, Sapienza University of Rome, Rome, Italy.
  • Cretella E; Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy.
  • De Luca V; Institute of Molecular Biology and Pathology/CNR, Sapienza University of Rome, Rome, Italy.
  • Palladino RA; Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy.
  • Panzeri V; Institute of Molecular Biology and Pathology/CNR, Sapienza University of Rome, Rome, Italy.
  • Roffia V; Institute of Molecular Biology and Pathology/CNR, Sapienza University of Rome, Rome, Italy.
  • Saliola M; Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Segrate, Italy.
  • Mauri P; Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Segrate, Italy.
  • Filetici P; Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy.
mBio ; 11(4)2020 08 11.
Article en En | MEDLINE | ID: mdl-32788380
Protein ubiquitylation regulates not only endocellular trafficking and proteasomal degradation but also the catalytic activity of enzymes. In Saccharomyces cerevisiae, we analyzed the composition of the ubiquitylated proteomes in strains lacking acetyltransferase Gcn5p, Ub-protease Ubp8p, or both to understand their involvement in the regulation of protein ubiquitylation. We analyzed His6Ub proteins with a proteomic approach coupling micro-liquid chromatography and tandem mass spectrometry (µLC-MS/MS) in gcn5Δ, ubp8Δ and ubp8Δ gcn5Δ strains. The Ub-proteome altered in the absence of Gcn5p, Ubp8p, or both was characterized, showing that 43% of the proteins was shared in all strains, suggesting their functional relationship. Remarkably, all major glycolytic enzymes showed increased ubiquitylation. Phosphofructokinase 1, the key enzyme of glycolytic flux, showed a higher and altered pattern of ubiquitylation in gcn5Δ and ubp8Δ strains. Severe defects of growth in poor sugar and altered glucose consumption confirmed a direct role of Gcn5p and Ubp8p in affecting the REDOX balance of the cell.IMPORTANCE We propose a study showing a novel role of Gcn5p and Ubp8p in the process of ubiquitylation of the yeast proteome which includes main glycolytic enzymes. Interestingly, in the absence of Gcn5p and Ubp8p glucose consumption and redox balance were altered in yeast. We believe that these results and the role of Gcn5p and Ubp8p in sugar metabolism might open new perspectives of research leading to novel protocols for counteracting the enhanced glycolysis in tumors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Endopeptidasas / Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Histona Acetiltransferasas / Ubiquitinación / Fermentación Idioma: En Revista: MBio Año: 2020 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Endopeptidasas / Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Histona Acetiltransferasas / Ubiquitinación / Fermentación Idioma: En Revista: MBio Año: 2020 Tipo del documento: Article País de afiliación: Italia