Potential environmental toxicity of sewage effluent with pharmaceuticals.
Ecotoxicology
; 29(9): 1315-1326, 2020 Nov.
Article
en En
| MEDLINE
| ID: mdl-32797393
Sewage effluent effects on the biochemical parameters of Astyanax bimaculatus organs were investigateted. Treated sewage was collected in a treatment plant; 43 compounds, among them, pharmaceuticals and hormones, were investigated. Caffeine, ciprofloxacin, clindamycin, ofloxacin, oxytetracycline, paracetamol, sulfadiazine, sulfamethoxazole, sulfathiazole and tylosin waste was detected in the collected material. Fish were divided into four groups: control, TSE (treated sewage effluent), TSE + P (TSE with increased concentration of five pharmaceuticals) and PTSE (TSE + P post-treated with O3/H2O2/UV). Biochemical parameters were evaluated in different organs after 14-day exposure. TBARS levels increased significantly in the brain of animals in the TSE and TSE + P groups in comparison to the control. There was significant reduction in TBARS levels recorded for the liver, muscle and gills of animals in the PTSE group in comparison to those of animals in the other groups. AChE activity reduced in the muscle of animals in the groups showing the highest pharmaceutical concentrations. CAT activity in the liver of animals in groups exposed to pharmaceutical effluent was inhibited. GST activity increased in brain of animals in the TSE + P and PTSE groups, whereas reduced levels of this activity were observed in liver of animals in the TSE group. Increased GST activity was observed in the brain of animals in TSE + P and PTSE groups. Based on integrated biomarker response values, the TSE + P group presented greater changes in the analyzed parameters. Results point out that pharmaceutical waste can cause oxidative stress, as well as affect biochemical and enzymatic parameters in Astyanax sp. Post-treatment can also reduce damages caused to fish, even in case of the likely formation of metabolites. Based on these results, these metabolites can be less toxic than the original compounds; however, they were not able to fully degrade the pharmaceutical waste found in the sewage, which can interfere in fish metabolism.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Contaminantes Químicos del Agua
/
Preparaciones Farmacéuticas
/
Eliminación de Residuos Líquidos
/
Monitoreo del Ambiente
Límite:
Animals
Idioma:
En
Revista:
Ecotoxicology
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Brasil