Your browser doesn't support javascript.
loading
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud.
Moreno-Martínez, Álvaro; Izquierdo-Verdiguier, Emma; Maneta, Marco P; Camps-Valls, Gustau; Robinson, Nathaniel; Muñoz-Marí, Jordi; Sedano, Fernando; Clinton, Nicholas; Running, Steven W.
Afiliación
  • Moreno-Martínez Á; Image Processing Laboratory (IPL), Universitat de València, València, Spain.
  • Izquierdo-Verdiguier E; Numerical Terradynamic Simulation Group (NTSG), WA Franke College of Forestry and Conservation, University of Montana, Missoula, USA.
  • Maneta MP; Institute of Geomatics, University of Natural Resources and Life Sciences, Wien, Austria.
  • Camps-Valls G; Department of Geosciences, University of Montana, USA.
  • Robinson N; Department of Ecosystem and Conservation Sciences, WA Franke College of Forestry and Conservation, University of Montana, USA.
  • Muñoz-Marí J; Image Processing Laboratory (IPL), Universitat de València, València, Spain.
  • Sedano F; Panthera, New York, NY, USA.
  • Clinton N; Image Processing Laboratory (IPL), Universitat de València, València, Spain.
  • Running SW; Department of Geographical Sciences, University of Maryland, College Park, USA.
Remote Sens Environ ; 247: 111901, 2020 Sep 15.
Article en En | MEDLINE | ID: mdl-32943798
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Remote Sens Environ Año: 2020 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Remote Sens Environ Año: 2020 Tipo del documento: Article País de afiliación: España