Your browser doesn't support javascript.
loading
Effects of patient orientations, landmark positions, and device positions on the MRI RF-induced heating for modular external fixation devices.
Xia, Meiqi; Zheng, Jianfeng; Yang, Rui; Song, Shuo; Xu, Jian; Liu, Qi; Kainz, Wolfgang; Long, Stuart A; Chen, Ji.
Afiliación
  • Xia M; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Zheng J; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Yang R; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Song S; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Xu J; UIH America Inc, Houston, Texas, USA.
  • Liu Q; UIH America Inc, Houston, Texas, USA.
  • Kainz W; Center for Devices and Radiological Health (CDRH), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
  • Long SA; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Chen J; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
Magn Reson Med ; 85(3): 1669-1680, 2021 03.
Article en En | MEDLINE | ID: mdl-32970911
ABSTRACT

PURPOSE:

This paper studies the RF-induced heating for modular external fixation devices applied on the leg regions of the human bodies. Through numerical investigations of RF-induced heating related to different patient orientations, landmark positions, and device positions under 1.5T and 3T MRI systems, simple and practical methods to reduce RF-induced heating are recommended.

METHODS:

Numerical simulations using a full-wave electromagnetic solver based on the finite-difference time-domain method were performed to characterize the effects of patient orientations (head-first/feet-first), landmark positions (the scanning area of the patient), and device positions (device on left or right leg) on the RF-induced heating of the external fixation devices. The G32 coil design and three anatomical human models (Duke model, Ella model, and Fats model) were adopted to model the MRI RF coil and the patients.

RESULTS:

The relative positions of the patient, device, and coil can significantly affect the RF-induced heating. With other conditions remaining the same, changing the device position or patient orientation can lead to a peak 1-g averaged spatial absorption ratio variation of a factor around four. By changing the landmark position and the patient orientation, the RF-induced heating can be reduced from 1323.6 W/kg to 217.5 W/kg for the specific scanning situations studied.

CONCLUSION:

Patient orientations, landmark positions, and device positions influence the RF-induced heating of modular external fixation devices at 1.5 T and 3 T. These features can be used to reduce the RF-induced heating during MRI simply and practically.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fijadores Externos / Calefacción Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fijadores Externos / Calefacción Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos