MOF-Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction.
Angew Chem Int Ed Engl
; 60(3): 1290-1297, 2021 Jan 18.
Article
en En
| MEDLINE
| ID: mdl-32996683
Arranging ionic liquids (ILs) with long-range order can not only enhance their performance in a desired application, but can also help elucidate the vital between structure and properties. However, this is still a challenge and no example has been reported to date. Herein, we report a feasible strategy to achieve a crystalline IL via coordination self-assembly based reticular chemistry. IL1 MOF, was prepared by designing an IL bridging ligand and then connecting them with metal clusters. IL1 MOF has a unique structure, where the IL ligands are arranged on a long-range ordered framework but have a labile ionic center. This structure enables IL1 MOF to break through the typical limitation where the solid ILs have lower proton conductivity than their counterpart bulk ILs. IL1 MOF shows 2-4 orders of magnitude higher proton conductivity than its counterpart IL monomer across a wide temperature range. Moreover, by confining the IL within ultramicropores (<1â
nm), IL1 MOF suppresses the liquid-solid phase transition temperatures to lower than -150 °C, allowing it to function with high conductivity in a subzero temperature range.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2021
Tipo del documento:
Article
País de afiliación:
China