Your browser doesn't support javascript.
loading
Contrasting responses of above- and below-ground herbivore communities along elevation.
Pitteloud, Camille; Descombes, Patrice; Sànchez-Moreno, Sara; Kergunteuil, Alan; Ibanez, Sébastien; Rasmann, Sergio; Pellissier, Loïc.
Afiliación
  • Pitteloud C; Landscape Ecology, Department of Environmental Systems Science, ETH Zürich, Institute of Terrestrial Ecosystems, Universitätstrasse 16, 8092, Zürich, Switzerland. camille.pitteloud@usys.ethz.ch.
  • Descombes P; Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland. camille.pitteloud@usys.ethz.ch.
  • Sànchez-Moreno S; Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland.
  • Kergunteuil A; Department of Environment and Agronomy, National Institute of Agriculture and Food Research and Technology, 28040, Madrid, Spain.
  • Ibanez S; Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
  • Rasmann S; Laboratoire D'Écologie Alpine (LECA), UMR CNRS5553, Université de Savoie, 73376, Le Bourget-du-lac, France.
  • Pellissier L; Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
Oecologia ; 194(3): 515-528, 2020 Nov.
Article en En | MEDLINE | ID: mdl-33078281
ABSTRACT
Above- and below-ground herbivory are key ecosystem processes that can be substantially altered by environmental changes. However, direct comparisons of the coupled variations of above- and below-ground herbivore communities along elevation gradients remain sparse. Here, we studied the variation in assemblages of two dominant groups of herbivores, namely, aboveground orthoptera and belowground nematodes, in grasslands along six elevation gradients in the Swiss Alps. By examining variations of community properties of herbivores and their food plants along montane clines, we sought to determine whether the structure and functional properties of these taxonomic groups change with elevation. We found that orthoptera decreased in both species richness and abundance with elevation. In contrast with aboveground herbivores, the taxonomic richness and the total abundance of nematode did not covary with elevation. We further found a stronger shift in above- than below-ground functional properties along elevation, where the mandibular strength of orthoptera matched a shift in leaf toughness. Nematodes showed a weaker pattern of declined sedentary behavior and increased mobility with elevation. In contrast to the direct exposal of aboveground organisms to the surface climate, conditions may be buffered belowground, which together with the influence of edaphic factors on the biodiversity of soil biota, may explain the differences between elevational patterns of above- and below-ground communities. Our study emphasizes the necessity to consider both the above- and below-ground compartments to understand the impact of current and future climatic variation on ecosystems, from a functional perspective of species interactions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Herbivoria / Nematodos Límite: Animals Idioma: En Revista: Oecologia Año: 2020 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Herbivoria / Nematodos Límite: Animals Idioma: En Revista: Oecologia Año: 2020 Tipo del documento: Article País de afiliación: Suiza