Your browser doesn't support javascript.
loading
Engineering of Living Cells with Polyphenol-Functionalized Biologically Active Nanocomplexes.
Zhao, Zongmin; Pan, Daniel C; Qi, Qin M; Kim, Jayoung; Kapate, Neha; Sun, Tao; Shields, C Wyatt; Wang, Lily Li-Wen; Wu, Debra; Kwon, Christopher J; He, Wei; Guo, Junling; Mitragotri, Samir.
Afiliación
  • Zhao Z; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
  • Pan DC; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
  • Qi QM; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
  • Kim J; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
  • Kapate N; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
  • Sun T; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
  • Shields CW; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
  • Wang LL; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
  • Wu D; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
  • Kwon CJ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • He W; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
  • Guo J; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
  • Mitragotri S; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Adv Mater ; 32(49): e2003492, 2020 Dec.
Article en En | MEDLINE | ID: mdl-33150643
ABSTRACT
Approaches to safely and effectively augment cellular functions without compromising the inherent biological properties of the cells, especially through the integration of biologically labile domains, remain of great interest. Here, a versatile strategy to assemble biologically active nanocomplexes, including proteins, DNA, mRNA, and even viral carriers, on cellular surfaces to generate a cell-based hybrid system referred to as "Cellnex" is established. This strategy can be used to engineer a wide range of cell types used in adoptive cell transfers, including erythrocytes, macrophages, NK cells, T cells, etc. Erythrocytenex can enhance the delivery of cargo proteins to the lungs in vivo by 11-fold as compared to the free cargo counterpart. Biomimetic microfluidic experiments and modeling provided detailed insights into the targeting mechanism. In addition, Macrophagenex is capable of enhancing the therapeutic efficiency of anti-PD-L1 checkpoint inhibitors in vivo. This simple and adaptable approach may offer a platform for the rapid generation of complex cellular systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sustancias Macromoleculares / Nanoestructuras / Polifenoles / Ingeniería Celular Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sustancias Macromoleculares / Nanoestructuras / Polifenoles / Ingeniería Celular Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos