Your browser doesn't support javascript.
loading
Control of filament length by a depolymerizing gradient.
Datta, Arnab; Harbage, David; Kondev, Jane.
Afiliación
  • Datta A; Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America.
  • Harbage D; Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America.
  • Kondev J; Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America.
PLoS Comput Biol ; 16(12): e1008440, 2020 12.
Article en En | MEDLINE | ID: mdl-33275598
ABSTRACT
Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimerizacion / Flagelos Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimerizacion / Flagelos Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos