A novel acceptor stem variant in mitochondrial tRNATyr impairs mitochondrial translation and is associated with a severe phenotype.
Mol Genet Metab
; 131(4): 398-404, 2020 12.
Article
en En
| MEDLINE
| ID: mdl-33279411
Genetic defects in mitochondrial DNA encoded tRNA genes impair mitochondrial translation with resultant defects in the mitochondrial respiratory chain and oxidative phosphorylation system. The phenotypic spectrum of disease seen in mitochondrial tRNA defects is variable and proving pathogenicity of new variants is challenging. Only three pathogenic variants have been described previously in the mitochondrial tRNATyr gene MT-TY, with the reported phenotypes consisting largely of adult onset myopathy and ptosis. We report a patient with a novel MT-TY acceptor stem variant m.5889A>G at high heteroplasmy in muscle, low in blood, and absent in the mother's blood. The phenotype consisted of a childhood-onset severe multi-system disorder characterized by a neurodegenerative course including ataxia and seizures, failure-to-thrive, combined myopathy and neuropathy, and hearing and vision loss. Brain imaging showed progressive atrophy and basal ganglia calcifications. Mitochondrial biomarkers lactate and GDF15 were increased. Functional studies showed a deficient activity of the respiratory chain enzyme complexes containing mtDNA-encoded subunits I, III and IV. There were decreased steady state levels of these mitochondrial complex proteins, and presence of incompletely assembled complex V forms in muscle. These changes are typical of a mitochondrial translational defect. These data support the pathogenicity of this novel variant. Careful review of variants in MT-TY additionally identified two other pathogenic variants, one likely pathogenic variant, nine variants of unknown significance, five likely benign and four benign variants.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Tirosina
/
ADN Mitocondrial
/
ARN de Transferencia
/
Enfermedades Musculares
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Mol Genet Metab
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BIOQUIMICA
/
METABOLISMO
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos