Your browser doesn't support javascript.
loading
Identifying transcription factors that reduce wood recalcitrance and improve enzymatic degradation of xylem cell wall in Populus.
Hori, Chiaki; Takata, Naoki; Lam, Pui Ying; Tobimatsu, Yuki; Nagano, Soichiro; Mortimer, Jenny C; Cullen, Dan.
Afiliación
  • Hori C; Research Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan. chori@eng.hokudai.ac.jp.
  • Takata N; Forest Bio-Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan.
  • Lam PY; Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.
  • Tobimatsu Y; Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.
  • Nagano S; Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan.
  • Mortimer JC; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, CA, 94720, USA.
  • Cullen D; U. S. Department of Agriculture, Forest Products Laboratory, Madison, WI, 53726, USA.
Sci Rep ; 10(1): 22043, 2020 12 16.
Article en En | MEDLINE | ID: mdl-33328495
ABSTRACT
Developing an efficient deconstruction step of woody biomass for biorefinery has been drawing considerable attention since its xylem cell walls display highly recalcitrance nature. Here, we explored transcriptional factors (TFs) that reduce wood recalcitrance and improve saccharification efficiency in Populus species. First, 33 TF genes up-regulated during poplar wood formation were selected as potential regulators of xylem cell wall structure. The transgenic hybrid aspens (Populus tremula × Populus tremuloides) overexpressing each selected TF gene were screened for in vitro enzymatic saccharification. Of these, four transgenic seedlings overexpressing previously uncharacterized TF genes increased total glucan hydrolysis on average compared to control. The best performing lines overexpressing Pt × tERF123 and Pt × tZHD14 were further grown to form mature xylem in the greenhouse. Notably, the xylem cell walls exhibited significantly increased total xylan hydrolysis as well as initial hydrolysis rates of glucan. The increased saccharification of Pt × tERF123-overexpressing lines could reflect the improved balance of cell wall components, i.e., high cellulose and low xylan and lignin content, which could be caused by upregulation of cellulose synthase genes upon the expression of Pt × tERF123. Overall, we successfully identified Pt × tERF123 and Pt × tZHD14 as effective targets for reducing cell wall recalcitrance and improving the enzymatic degradation of woody plant biomass.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Factores de Transcripción / Madera / Regulación Enzimológica de la Expresión Génica / Pared Celular / Regulación de la Expresión Génica de las Plantas / Populus Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Factores de Transcripción / Madera / Regulación Enzimológica de la Expresión Génica / Pared Celular / Regulación de la Expresión Génica de las Plantas / Populus Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Japón