Your browser doesn't support javascript.
loading
Nicotiana benthamiana as a Transient Expression Host to Produce Auxin Analogs.
Davis, Katharine; Gkotsi, Danai S; Smith, Duncan R M; Goss, Rebecca J M; Caputi, Lorenzo; O'Connor, Sarah E.
Afiliación
  • Davis K; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
  • Gkotsi DS; School of Chemistry, University of St Andrews, St Andrews, United Kingdom.
  • Smith DRM; School of Chemistry, University of St Andrews, St Andrews, United Kingdom.
  • Goss RJM; School of Chemistry, University of St Andrews, St Andrews, United Kingdom.
  • Caputi L; Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
  • O'Connor SE; Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
Front Plant Sci ; 11: 581675, 2020.
Article en En | MEDLINE | ID: mdl-33329644
ABSTRACT
Plant secondary metabolites have applications for the food, biofuel, and pharmaceutical industries. Recent advances in pathway elucidation and host expression systems now allow metabolic engineering of plant metabolic pathways to produce "new-to-nature" derivatives with novel biological activities, thereby amplifying the range of industrial uses for plant metabolites. Here we use a transient expression system in the model plant Nicotiana benthamiana to reconstitute the two-step plant-derived biosynthetic pathway for auxin (indole acetic acid) to achieve accumulation up to 500 ng/g fresh mass (FM). By expressing these plant-derived enzymes in combination with either bacterial halogenases and alternative substrates, we can produce both natural and new-to-nature halogenated auxin derivatives up to 990 ng/g FM. Proteins from the auxin synthesis pathway, tryptophan aminotransferases (TARs) and flavin-dependent monooxygenases (YUCs), could be transiently expressed in combination with four separate bacterial halogenases to generate halogenated auxin derivatives. Brominated auxin derivatives could also be observed after infiltration of the transfected N. benthamiana with potassium bromide and the halogenases. Finally, the production of additional auxin derivatives could also be achieved by co-infiltration of TAR and YUC genes with various tryptophan analogs. Given the emerging importance of transient expression in N. benthamiana for industrial scale protein and product expression, this work provides insight into the capacity of N. benthamiana to interface bacterial genes and synthetic substrates to produce novel halogenated metabolites.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido