The German Corona Consensus Dataset (GECCO): a standardized dataset for COVID-19 research in university medicine and beyond.
BMC Med Inform Decis Mak
; 20(1): 341, 2020 12 21.
Article
en En
| MEDLINE
| ID: mdl-33349259
BACKGROUND: The current COVID-19 pandemic has led to a surge of research activity. While this research provides important insights, the multitude of studies results in an increasing fragmentation of information. To ensure comparability across projects and institutions, standard datasets are needed. Here, we introduce the "German Corona Consensus Dataset" (GECCO), a uniform dataset that uses international terminologies and health IT standards to improve interoperability of COVID-19 data, in particular for university medicine. METHODS: Based on previous work (e.g., the ISARIC-WHO COVID-19 case report form) and in coordination with experts from university hospitals, professional associations and research initiatives, data elements relevant for COVID-19 research were collected, prioritized and consolidated into a compact core dataset. The dataset was mapped to international terminologies, and the Fast Healthcare Interoperability Resources (FHIR) standard was used to define interoperable, machine-readable data formats. RESULTS: A core dataset consisting of 81 data elements with 281 response options was defined, including information about, for example, demography, medical history, symptoms, therapy, medications or laboratory values of COVID-19 patients. Data elements and response options were mapped to SNOMED CT, LOINC, UCUM, ICD-10-GM and ATC, and FHIR profiles for interoperable data exchange were defined. CONCLUSION: GECCO provides a compact, interoperable dataset that can help to make COVID-19 research data more comparable across studies and institutions. The dataset will be further refined in the future by adding domain-specific extension modules for more specialized use cases.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Investigación Biomédica
/
Conjuntos de Datos como Asunto
/
COVID-19
/
Medicina
Tipo de estudio:
Guideline
Límite:
Humans
Idioma:
En
Revista:
BMC Med Inform Decis Mak
Asunto de la revista:
INFORMATICA MEDICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Alemania