Your browser doesn't support javascript.
loading
The usage of deep neural network improves distinguishing COVID-19 from other suspected viral pneumonia by clinicians on chest CT: a real-world study.
Xie, Qiuchen; Lu, Yiping; Xie, Xiancheng; Mei, Nan; Xiong, Yun; Li, Xuanxuan; Zhu, Yangyong; Xiao, Anling; Yin, Bo.
Afiliación
  • Xie Q; Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China.
  • Lu Y; Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China.
  • Xie X; Shanghai Yidan Information Technology Co., Ltd; Shanghai Key Laboratory of Data Science, Shanghai Institute for Advanced Communication and Data Science, School of Computer Science, Fudan University, Shanghai, China.
  • Mei N; Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China.
  • Xiong Y; Shanghai Key Laboratory of Data Science, Shanghai Institute for Advanced Communication and Data Science, School of Computer Science, Fudan University, Shanghai, China.
  • Li X; Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China.
  • Zhu Y; Shanghai Key Laboratory of Data Science, Shanghai Institute for Advanced Communication and Data Science, School of Computer Science, Fudan University, Shanghai, China.
  • Xiao A; Department of Radiology, Fuyang No. 2 People's Hospital, 450 Linquan Road, Fuyang, Anhui Province, China.
  • Yin B; Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China. yinbo@fudan.edu.cn.
Eur Radiol ; 31(6): 3864-3873, 2021 Jun.
Article en En | MEDLINE | ID: mdl-33372243
ABSTRACT

OBJECTIVES:

Based on the current clinical routine, we aimed to develop a novel deep learning model to distinguish coronavirus disease 2019 (COVID-19) pneumonia from other types of pneumonia and validate it with a real-world dataset (RWD).

METHODS:

A total of 563 chest CT scans of 380 patients (227/380 were diagnosed with COVID-19 pneumonia) from 5 hospitals were collected to train our deep learning (DL) model. Lung regions were extracted by U-net, then transformed and fed to pre-trained ResNet-50-based IDANNet (Identification and Analysis of New covid-19 Net) to produce a diagnostic probability. Fivefold cross-validation was employed to validate the application of our model. Another 318 scans of 316 patients (243/316 were diagnosed with COVID-19 pneumonia) from 2 other hospitals were enrolled prospectively as the RWDs to testify our DL model's performance and compared it with that from 3 experienced radiologists.

RESULTS:

A three-dimensional DL model was successfully established. The diagnostic threshold to differentiate COVID-19 and non-COVID-19 pneumonia was 0.685 with an AUC of 0.906 (95% CI 0.886-0.913) in the internal validation group. In the RWD cohort, our model achieved an AUC of 0.868 (95% CI 0.851-0.876) with the sensitivity of 0.811 and the specificity of 0.822, non-inferior to the performance of 3 experienced radiologists, suggesting promising clinical practical usage.

CONCLUSIONS:

The established DL model was able to achieve accurate identification of COVID-19 pneumonia from other suspected ones in the real-world situation, which could become a reliable tool in clinical routine. KEY POINTS • In an internal validation set, our DL model achieved the best performance to differentiate COVID-19 from non-COVID-19 pneumonia with a sensitivity of 0.836, a specificity of 0.800, and an AUC of 0.906 (95% CI 0.886-0.913) when the threshold was set at 0.685. • In the prospective RWD cohort, our DL diagnostic model achieved a sensitivity of 0.811, a specificity of 0.822, and AUC of 0.868 (95% CI 0.851-0.876), non-inferior to the performance of 3 experienced radiologists. • The attention heatmaps were fully generated by the model without additional manual annotation and the attention regions were highly aligned with the ROIs acquired by human radiologists for diagnosis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neumonía Viral / Aprendizaje Profundo / COVID-19 Tipo de estudio: Guideline / Observational_studies Límite: Humans Idioma: En Revista: Eur Radiol Asunto de la revista: RADIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neumonía Viral / Aprendizaje Profundo / COVID-19 Tipo de estudio: Guideline / Observational_studies Límite: Humans Idioma: En Revista: Eur Radiol Asunto de la revista: RADIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: China