Your browser doesn't support javascript.
loading
Self-Assembled Peptide Nanofibers with Voltage-Regulated Inverse Photoconductance.
Shi, Huiyao; Li, Minglin; Shi, Jialin; Zhang, Dindong; Fan, Zhen; Zhang, Mingjun; Liu, Lianqing.
Afiliación
  • Shi H; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
  • Li M; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China.
  • Shi J; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang D; Fujian Key Laboratory of Medical Instrumentation and Pharmaceutical Technology, Fuzhou 350108, China.
  • Fan Z; College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.
  • Zhang M; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
  • Liu L; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China.
ACS Appl Mater Interfaces ; 13(1): 1057-1064, 2021 Jan 13.
Article en En | MEDLINE | ID: mdl-33378176
ABSTRACT
Inverse photoconductance is an uncommon phenomenon observed in selective low-dimensional materials, in which the electrical conductivity of the materials decreases under light illumination. The unique material property holds great promise for biomedical applications in photodetectors, photoelectric logic gates, and low-power nonvolatile memory, which remains a daunting challenge. Especially, tunable photoconductivity for biocompatible materials is highly desired for interfacing with biological systems but is less explored in organic materials. Here, we report nanofibers self-assembled with cyclo-tyrosine-tyrosine (cyclo-YY) having voltage-regulated inverse photoconductance and photoconductance. The peptide nanofibers can be switched back and forth by a bias voltage for imitating biological sensing in artificial vision and memory devices. A peptide optoelectronic resistive random access memory (PORRAM) device has also been fabricated using the nanofibers that can be electrically switched between long-term and short-term memory. The underlying mechanism of the reversible photoconductance is discussed in this paper. Due to the inherent biocompatibility of peptide materials, the reversible photoconductive nanofibers may have broad applications in sensing and storage for biotic and abiotic interfaces.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos Cíclicos / Dipéptidos / Nanofibras Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos Cíclicos / Dipéptidos / Nanofibras Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China