Your browser doesn't support javascript.
loading
Living materials with programmable functionalities grown from engineered microbial co-cultures.
Gilbert, Charlie; Tang, Tzu-Chieh; Ott, Wolfgang; Dorr, Brandon A; Shaw, William M; Sun, George L; Lu, Timothy K; Ellis, Tom.
Afiliación
  • Gilbert C; Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
  • Tang TC; Department of Bioengineering, Imperial College London, London, UK.
  • Ott W; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Dorr BA; The Mediated Matter Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Shaw WM; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Sun GL; Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
  • Lu TK; Department of Bioengineering, Imperial College London, London, UK.
  • Ellis T; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Mater ; 20(5): 691-700, 2021 05.
Article en En | MEDLINE | ID: mdl-33432140
ABSTRACT
Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Celulosa / Acetobacteraceae Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Celulosa / Acetobacteraceae Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido