Your browser doesn't support javascript.
loading
Structure, dynamics and transport behavior of migrating corrosion inhibitors on the surface of calcium silicate hydrate: a molecular dynamics study.
Sun, Ming; Yang, Qingrui; Zhang, Yue; Wang, Pan; Hou, Dongshuai; Liu, Qingfeng; Zhang, Jinrui; Zhang, Jigang.
Afiliación
  • Sun M; The Hong Kong University of Science and Technology, Hong Kong, China. msunac@connect.ust.hk.
Phys Chem Chem Phys ; 23(5): 3267-3280, 2021 Feb 07.
Article en En | MEDLINE | ID: mdl-33506236
ABSTRACT
The incorporation of a corrosion inhibitor into a cement-based material can enhance the durability of the reinforced concrete. In this study, molecular dynamics simulation is utilized to study the interfacial structure and dynamic behavior of a solution with three migrating corrosion inhibitors (MCI) functionalized by hydroxyl (-OH), carboxyl (-COO-), and phenyl (-PH) groups in calcium silicate hydrate (CSH) gel pores. The transport rate of inhibitors is greatly dependent on the polarity of the functional group -PH > -OH > -COO-. The slow migration rate of the inhibitor with -OH and -COO- is attributed to the chemical bond formed between CSH and MCI. The silicate chains near the CSH surface can provide plenty of non-bridging oxygen sites to accept the H-bond from the hydroxyl group in the inhibitor molecule. The surface calcium atom can capture the -COO- by forming an ionic COO-Ca bond. Furthermore, the hydration structure of the inhibitor molecule also influences its transport properties. The inhibitor functionalized by the carboxyl group, associating with the neighboring water molecules, forms ion-water clusters, and the inhibitor molecule and its hydration shell with a long resident time retard the migration rate. Hopefully, this study is able to provide molecules for the development of a migration-type corrosion inhibitor to elongate the service life of cement-based materials.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: China