Analogue discovery of safer alternatives to HCQ and CQ drugs for SAR-CoV-2 by computational design.
Comput Biol Med
; 130: 104222, 2021 03.
Article
en En
| MEDLINE
| ID: mdl-33535144
COVID-19 outbreak poses a severe health emergency to the global community. Due to availability of limited data, the selection of an effective treatment is a challenge. Hydroxychloroquine (HCQ), a chloroquine (CQ) derivative administered for malaria and autoimmune diseases, has been shown to be effective against both Severe Acute Respiratory Syndrome (SARS-CoV-1) and SARS-CoV-2. Apart from the known adverse effects of these drugs, recently the use of CQ and HCQ as a potential treatment for COVID-19 is under flux globally. In this study, we focused on identifying a more potent analogue of HCQ and CQ against the spike protein of SAR-CoV-2 that can act as an effective antiviral agent for COVID-19 treatment. Systematic pharmacokinetics, drug-likeness, basicity predictions, virtual screening and molecular dynamics analysis (200 ns) were carried out to predict the inhibition potential of the analogous compounds on the spike protein. This work identifies the six potential analogues, out of which two compounds, namely 1-[1-(6-Chloroquinolin-4-yl) piperidin-4-yl]piperidin-3-ol and (1R,2R)-2-N-(7-Chloroquinolin-4-yl)cyclohexane-1,2-diamine interact with the active site of the spike protein similar to HCQ and CQ respectively with augmented safety profile.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Descubrimiento de Drogas
/
Simulación de Dinámica Molecular
/
Simulación del Acoplamiento Molecular
/
Glicoproteína de la Espiga del Coronavirus
/
SARS-CoV-2
/
Tratamiento Farmacológico de COVID-19
/
Hidroxicloroquina
Límite:
Humans
Idioma:
En
Revista:
Comput Biol Med
Año:
2021
Tipo del documento:
Article
País de afiliación:
India