Your browser doesn't support javascript.
loading
Single-Atom Catalysts Derived from Metal-Organic Frameworks for Electrochemical Applications.
Zou, Lianli; Wei, Yong-Sheng; Hou, Chun-Chao; Li, Caixia; Xu, Qiang.
Afiliación
  • Zou L; AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
  • Wei YS; AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
  • Hou CC; AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
  • Li C; AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
  • Xu Q; AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
Small ; 17(16): e2004809, 2021 Apr.
Article en En | MEDLINE | ID: mdl-33538109
Single-atom catalysts (SACs) have received tremendous attention due to their extraordinary catalytic performances. The synthesis of this kind of catalysts is highly desired and challenging. In the last few years, metal-organic frameworks (MOFs) have been demonstrated as a promising precursor for fabricating SACs. In this review, the progress and recent advances in the synthesis of MOF-derived SACs and their electrochemical applications are summarized. First, the synthetic approaches based on MOFs and accessible characterization techniques for SACs as well as their advantages/disadvantages are discussed. Then, the electrochemical applications of these MOF-derived SACs including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), CO2 reduction reaction (CO2 RR), nitrogen reduction reaction (NRR), and other energy-related reactions are reviewed. Finally, insights into the current challenges and future prospects of this field are briefly presented.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Japón