Your browser doesn't support javascript.
loading
The zebrafish grime mutant uncovers an evolutionarily conserved role for Tmem161b in the control of cardiac rhythm.
Koopman, Charlotte D; De Angelis, Jessica; Iyer, Swati P; Verkerk, Arie O; Da Silva, Jason; Berecki, Geza; Jeanes, Angela; Baillie, Gregory J; Paterson, Scott; Uribe, Veronica; Ehrlich, Ophelia V; Robinson, Samuel D; Garric, Laurence; Petrou, Steven; Simons, Cas; Vetter, Irina; Hogan, Benjamin M; de Boer, Teun P; Bakkers, Jeroen; Smith, Kelly A.
Afiliación
  • Koopman CD; Department of Cardiac Development and Genetics, Hubrecht Institute, University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands.
  • De Angelis J; Department of Medical Physiology, Division of Heart & Lungs, University Medical Center, Utrecht 3584 CM, The Netherlands.
  • Iyer SP; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Verkerk AO; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Da Silva J; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Berecki G; Department of Medical Biology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands.
  • Jeanes A; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Baillie GJ; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Paterson S; Department of the Florey Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Uribe V; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Ehrlich OV; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Robinson SD; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Garric L; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Petrou S; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Simons C; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Vetter I; Department of Cardiac Development and Genetics, Hubrecht Institute, University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands.
  • Hogan BM; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • de Boer TP; Department of the Florey Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Bakkers J; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Smith KA; Genetics Theme, Murdoch Children's Research Institute, Parkville, VIC 3010, Australia.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article en En | MEDLINE | ID: mdl-33597309
ABSTRACT
The establishment of cardiac function in the developing embryo is essential to ensure blood flow and, therefore, growth and survival of the animal. The molecular mechanisms controlling normal cardiac rhythm remain to be fully elucidated. From a forward genetic screen, we identified a unique mutant, grime, that displayed a specific cardiac arrhythmia phenotype. We show that loss-of-function mutations in tmem161b are responsible for the phenotype, identifying Tmem161b as a regulator of cardiac rhythm in zebrafish. To examine the evolutionary conservation of this function, we generated knockout mice for Tmem161b. Tmem161b knockout mice are neonatal lethal and cardiomyocytes exhibit arrhythmic calcium oscillations. Mechanistically, we find that Tmem161b is expressed at the cell membrane of excitable cells and live imaging shows it is required for action potential repolarization in the developing heart. Electrophysiology on isolated cardiomyocytes demonstrates that Tmem161b is essential to inhibit Ca2+ and K+ currents in cardiomyocytes. Importantly, Tmem161b haploinsufficiency leads to cardiac rhythm phenotypes, implicating it as a candidate gene in heritable cardiac arrhythmia. Overall, these data describe Tmem161b as a highly conserved regulator of cardiac rhythm that functions to modulate ion channel activity in zebrafish and mice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arritmias Cardíacas / Proteínas de Pez Cebra / Miocitos Cardíacos / Frecuencia Cardíaca / Proteínas de la Membrana / Mutación Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arritmias Cardíacas / Proteínas de Pez Cebra / Miocitos Cardíacos / Frecuencia Cardíaca / Proteínas de la Membrana / Mutación Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos