Decimeter-Scale Atomically Thin Graphene Membranes for Gas-Liquid Separation.
ACS Appl Mater Interfaces
; 13(8): 10328-10335, 2021 Mar 03.
Article
en En
| MEDLINE
| ID: mdl-33599473
Graphene holds great potential for fabricating ultrathin selective membranes possessing high permeability without compromising selectivity and has attracted intensive interest in developing high-performance separation membranes for desalination, natural gas purification, hemodialysis, distillation, and other gas-liquid separation. However, the scalable and cost-effective synthesis of nanoporous graphene membranes, especially designing a method to produce an appropriate porous polymer substrate, remains very challenging. Here, we report a facile route to fabricate decimeter-scale (â¼15 × 10 cm2) nanoporous atomically thin membranes (NATMs) via the direct casting of the porous polymer substrate onto graphene, which was produced by chemical vapor deposition (CVD). After the vapor-induced phase-inversion process under proper experimental conditions (60 °C and 60% humidity), the flexible nanoporous polymer substrate was formed. The resultant skin-free polymer substrate, which had the proper pore size and a uniform spongelike structure, provided enough mechanical support without reducing the permeance of the NATMs. It was demonstrated that after creating nanopores by the O2 plasma treatment, the NATMs were salt-resistant and simultaneously showed 3-5 times higher gas (CO2) permeance than the state-of-the-art commercial polymeric membranes. Therefore, our work provides guidance for the technological developments of graphene-based membranes and bridges the gap between the laboratory-scale "proof-of-concept" and the practical applications of NATMs in the industry.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Guideline
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China