Your browser doesn't support javascript.
loading
Parental variation in CHG methylation is associated with allelic-specific expression in elite hybrid rice.
Ma, Xuan; Xing, Feng; Jia, Qingxiao; Zhang, Qinglu; Hu, Tong; Wu, Baoguo; Shao, Lin; Zhao, Yu; Zhang, Qifa; Zhou, Dao-Xiu.
Afiliación
  • Ma X; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Xing F; College of Life Science, Xinyang Normal University, 464000 Xinyang, China.
  • Jia Q; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Zhang Q; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Hu T; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Wu B; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Shao L; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Zhao Y; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Zhang Q; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
  • Zhou DX; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
Plant Physiol ; 186(2): 1025-1041, 2021 06 11.
Article en En | MEDLINE | ID: mdl-33620495
ABSTRACT
Heterosis refers to the superior performance of hybrid lines over inbred parental lines. Besides genetic variation, epigenetic differences between parental lines are suggested to contribute to heterosis. However, the precise nature and extent of differences between the parental epigenomes and the reprograming in hybrids that govern heterotic gene expression remain unclear. In this work, we analyzed DNA methylomes and transcriptomes of the widely cultivated and genetically studied elite hybrid rice (Oryza sativa) SY63, the reciprocal hybrid, and the parental varieties ZS97 and MH63, for which high-quality reference genomic sequences are available. We showed that the parental varieties displayed substantial variation in genic methylation at CG and CHG (H = A, C, or T) sequences. Compared with their parents, the hybrids displayed dynamic methylation variation during development. However, many parental differentially methylated regions (DMRs) at CG and CHG sites were maintained in the hybrid. Only a small fraction of the DMRs displayed non-additive DNA methylation variation, which, however, showed no overall correlation relationship with gene expression variation. In contrast, most of the allelic-specific expression (ASE) genes in the hybrid were associated with DNA methylation, and the ASE negatively associated with allelic-specific methylation (ASM) at CHG. These results revealed a specific DNA methylation reprogramming pattern in the hybrid rice and pointed to a role for parental CHG methylation divergence in ASE, which is associated with phenotype variation and hybrid vigor in several plant species.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza / Metilación de ADN / Epigénesis Genética / Vigor Híbrido Tipo de estudio: Risk_factors_studies Idioma: En Revista: Plant Physiol Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza / Metilación de ADN / Epigénesis Genética / Vigor Híbrido Tipo de estudio: Risk_factors_studies Idioma: En Revista: Plant Physiol Año: 2021 Tipo del documento: Article País de afiliación: China