Your browser doesn't support javascript.
loading
Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells.
Brown, Jared; Barry, Christopher; Schmitz, Matthew T; Argus, Cara; Bolin, Jennifer M; Schwartz, Michael P; Van Aartsen, Amy; Steill, John; Swanson, Scott; Stewart, Ron; Thomson, James A; Kendziorski, Christina.
Afiliación
  • Brown J; Department of Statistics, University of Wisconsin-Madison, Wisconsin, United States of America.
  • Barry C; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Schmitz MT; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Argus C; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Bolin JM; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Schwartz MP; NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, Wisconsin, United States of America.
  • Van Aartsen A; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Steill J; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Swanson S; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Stewart R; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Thomson JA; Morgridge Institute for Research, Madison, Wisconsin, United States of America.
  • Kendziorski C; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America.
PLoS Comput Biol ; 17(3): e1008778, 2021 03.
Article en En | MEDLINE | ID: mdl-33647016
ABSTRACT
Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes / Quimerismo / Neurogénesis / Células Madre Embrionarias Humanas Tipo de estudio: Guideline / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes / Quimerismo / Neurogénesis / Células Madre Embrionarias Humanas Tipo de estudio: Guideline / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos