Your browser doesn't support javascript.
loading
ATF3-Induced Mammary Tumors Exhibit Molecular Features of Human Basal-Like Breast Cancer.
Yan, Leqin; Gaddis, Sally; Coletta, Luis Della; Repass, John; Powell, Katherine Leslie; Simper, Melissa S; Chen, Yueping; Byrom, Michelle; Zhong, Yi; Lin, Kevin; Liu, Bin; Lu, Yue; Shen, Jianjun; MacLeod, Michael C.
Afiliación
  • Yan L; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Gaddis S; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Coletta LD; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Repass J; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Powell KL; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Simper MS; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Chen Y; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Byrom M; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Zhong Y; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Lin K; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Liu B; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • Lu Y; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
  • Shen J; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
  • MacLeod MC; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article en En | MEDLINE | ID: mdl-33652981
ABSTRACT
Basal-like breast cancer (BLBC) is an aggressive and deadly subtype of human breast cancer that is highly metastatic, displays stem-cell like features, and has limited treatment options. Therefore, developing and characterizing preclinical mouse models with tumors that resemble BLBC is important for human therapeutic development. ATF3 is a potent oncogene that is aberrantly expressed in most human breast cancers. In the BK5.ATF3 mouse model, overexpression of ATF3 in the basal epithelial cells of the mammary gland produces tumors that are characterized by activation of the Wnt/ß-catenin signaling pathway. Here, we used RNA-Seq and microRNA (miRNA) microarrays to better define the molecular features of BK5.ATF3-derived mammary tumors. These analyses showed that these tumors share many characteristics of human BLBC including reduced expression of Rb1, Esr1, and Pgr and increased expression of Erbb2, Egfr, and the genes encoding keratins 5, 6, and 17. An analysis of miRNA expression revealed reduced levels of Mir145 and Mir143, leading to the upregulation of their target genes including both the pluripotency factors Klf4 and Sox2 as well as the cancer stem-cell-related gene Kras. Finally, we show through knock-down experiments that ATF3 may directly modulate MIR145/143 expression. Taken together, our results indicate that the ATF3 mouse mammary tumor model could provide a powerful model to define the molecular mechanisms leading to BLBC, identify the factors that contribute to its aggressiveness, and, ultimately, discover specific genes and gene networks for therapeutic targeting.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Regulación Neoplásica de la Expresión Génica / Neoplasias Mamarias Animales / Factor de Transcripción Activador 3 Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Regulación Neoplásica de la Expresión Génica / Neoplasias Mamarias Animales / Factor de Transcripción Activador 3 Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos