Your browser doesn't support javascript.
loading
The role of mechanical interactions in EMT.
Murphy, Ryan J; Buenzli, Pascal R; Tambyah, Tamara A; Thompson, Erik W; Hugo, Honor J; Baker, Ruth E; Simpson, Matthew J.
Afiliación
  • Murphy RJ; Queensland University of Technology, Mathematical Sciences, Brisbane, Australia.
  • Buenzli PR; Queensland University of Technology, Mathematical Sciences, Brisbane, Australia.
  • Tambyah TA; Queensland University of Technology, Mathematical Sciences, Brisbane, Australia.
  • Thompson EW; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia.
  • Hugo HJ; Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Australia.
  • Baker RE; Translational Research Institute, Brisbane, Australia.
  • Simpson MJ; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia.
Phys Biol ; 18(4)2021 05 12.
Article en En | MEDLINE | ID: mdl-33789261
The detachment of cells from the boundary of an epithelial tissue and the subsequent invasion of these cells into surrounding tissues is important for cancer development and wound healing, and is strongly associated with the epithelial-mesenchymal transition (EMT). Chemical signals, such as TGF-ß, produced by surrounding tissue can be uptaken by cells and induce EMT. In this work, we present a novel cell-based discrete mathematical model of mechanical cellular relaxation, cell proliferation, and cell detachment driven by chemically-dependent EMT in an epithelial tissue. A continuum description of the model is then derived in the form of a novel nonlinear free boundary problem. Using the discrete and continuum models we explore how the coupling of chemical transport and mechanical interactions influences EMT, and postulate how this could be used to help control EMT in pathological situations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Movimiento Celular / Proliferación Celular / Transición Epitelial-Mesenquimal Idioma: En Revista: Phys Biol Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Movimiento Celular / Proliferación Celular / Transición Epitelial-Mesenquimal Idioma: En Revista: Phys Biol Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Australia