Your browser doesn't support javascript.
loading
Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy.
Bleakley, Lauren E; McKenzie, Chaseley E; Soh, Ming S; Forster, Ian C; Pinares-Garcia, Paulo; Sedo, Alicia; Kathirvel, Anirudh; Churilov, Leonid; Jancovski, Nikola; Maljevic, Snezana; Berkovic, Samuel F; Scheffer, Ingrid E; Petrou, Steven; Santoro, Bina; Reid, Christopher A.
Afiliación
  • Bleakley LE; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • McKenzie CE; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Soh MS; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Forster IC; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Pinares-Garcia P; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Sedo A; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Kathirvel A; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Churilov L; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Jancovski N; Melbourne Medical School, University of Melbourne, Parkville, Victoria 3010, Australia.
  • Maljevic S; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Berkovic SF; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Scheffer IE; Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
  • Petrou S; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
  • Santoro B; Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
  • Reid CA; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
Brain ; 144(7): 2060-2073, 2021 08 17.
Article en En | MEDLINE | ID: mdl-33822003
ABSTRACT
Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encefalopatías / Canales de Potasio / Modelos Animales de Enfermedad / Epilepsia / Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización / Neuronas Límite: Animals Idioma: En Revista: Brain Año: 2021 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encefalopatías / Canales de Potasio / Modelos Animales de Enfermedad / Epilepsia / Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización / Neuronas Límite: Animals Idioma: En Revista: Brain Año: 2021 Tipo del documento: Article País de afiliación: Australia