Your browser doesn't support javascript.
loading
Inference of brain networks with approximate Bayesian computation - assessing face validity with an example application in Parkinsonism.
West, Timothy O; Berthouze, Luc; Farmer, Simon F; Cagnan, Hayriye; Litvak, Vladimir.
Afiliación
  • West TO; Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom; Wellcome Trust Centre for Human Neuroimaging, UCL Institute of N
  • Berthouze L; Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, United Kingdom; UCL Great Ormond Street Institute of Child Health, Guildford St., London WC1N 1EH, United Kingdom.
  • Farmer SF; Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; Department of Clinical and Movement Neurosciences, Institute of Neurology, Queen Square, UCL, London WC1N 3BG, United Kingdom.
  • Cagnan H; Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom; Wellcome Trust Centre for Human Neuroimaging, UCL Institute of N
  • Litvak V; Wellcome Trust Centre for Human Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
Neuroimage ; 236: 118020, 2021 08 01.
Article en En | MEDLINE | ID: mdl-33839264
ABSTRACT
This paper describes and validates a novel framework using the Approximate Bayesian Computation (ABC) algorithm for parameter estimation and model selection in models of mesoscale brain network activity. We provide a proof of principle, first pass validation of this framework using a set of neural mass models of the cortico-basal ganglia thalamic circuit inverted upon spectral features from experimental, in vivo recordings. This optimization scheme relaxes an assumption of fixed-form posteriors (i.e. the Laplace approximation) taken in previous approaches to inverse modelling of spectral features. This enables the exploration of model dynamics beyond that approximated from local linearity assumptions and so fit to explicit, numerical solutions of the underlying non-linear system of equations. In this first paper, we establish a face validation of the optimization procedures in terms of (i) the ability to approximate posterior densities over parameters that are plausible given the known causes of the data; (ii) the ability of the model comparison procedures to yield posterior model probabilities that can identify the model structure known to generate the data; and (iii) the robustness of these procedures to local minima in the face of different starting conditions. Finally, as an illustrative application we show (iv) that model comparison can yield plausible conclusions given the known neurobiology of the cortico-basal ganglia-thalamic circuit in Parkinsonism. These results lay the groundwork for future studies utilizing highly nonlinear or brittle models that can explain time dependant dynamics, such as oscillatory bursts, in terms of the underlying neural circuits.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tálamo / Ganglios Basales / Algoritmos / Corteza Cerebral / Trastornos Parkinsonianos / Neuroimagen / Modelos Teóricos / Red Nerviosa Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tálamo / Ganglios Basales / Algoritmos / Corteza Cerebral / Trastornos Parkinsonianos / Neuroimagen / Modelos Teóricos / Red Nerviosa Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article