Your browser doesn't support javascript.
loading
Parity-preserving and magnetic field-resilient superconductivity in InSb nanowires with Sn shells.
Pendharkar, M; Zhang, B; Wu, H; Zarassi, A; Zhang, P; Dempsey, C P; Lee, J S; Harrington, S D; Badawy, G; Gazibegovic, S; Op Het Veld, R L M; Rossi, M; Jung, J; Chen, A-H; Verheijen, M A; Hocevar, M; Bakkers, E P A M; Palmstrøm, C J; Frolov, S M.
Afiliación
  • Pendharkar M; Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.
  • Zhang B; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Wu H; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Zarassi A; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Zhang P; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Dempsey CP; Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.
  • Lee JS; California NanoSystems Institute, University of California, Santa Barbara, CA 93106, USA.
  • Harrington SD; Materials Department, University of California, Santa Barbara, CA 93106, USA.
  • Badawy G; Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.
  • Gazibegovic S; Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.
  • Op Het Veld RLM; Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.
  • Rossi M; Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.
  • Jung J; Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.
  • Chen AH; Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France.
  • Verheijen MA; Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.
  • Hocevar M; Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France.
  • Bakkers EPAM; Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.
  • Palmstrøm CJ; Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.
  • Frolov SM; California NanoSystems Institute, University of California, Santa Barbara, CA 93106, USA.
Science ; 372(6541): 508-511, 2021 04 30.
Article en En | MEDLINE | ID: mdl-33858990
Improving materials used to make qubits is crucial to further progress in quantum information processing. Of particular interest are semiconductor-superconductor heterostructures that are expected to form the basis of topological quantum computing. We grew semiconductor indium antimonide nanowires that were coated with shells of tin of uniform thickness. No interdiffusion was observed at the interface between Sn and InSb. Tunnel junctions were prepared by in situ shadowing. Despite the lack of lattice matching between Sn and InSb, a 15-nanometer-thick shell of tin was found to induce a hard superconducting gap, with superconductivity persisting in magnetic field up to 4 teslas. A small island of Sn-InSb exhibits the two-electron charging effect. These findings suggest a less restrictive approach to fabricating superconducting and topological quantum circuits.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos