Your browser doesn't support javascript.
loading
Observation of Electric-Field-Induced Structural Dislocations in a Ferroelectric Oxide.
Evans, Donald M; Småbråten, Didrik René; Holstad, Theodor S; Vullum, Per Erik; Mosberg, Aleksander B; Yan, Zewu; Bourret, Edith; van Helvoort, Antonius T J; Selbach, Sverre M; Meier, Dennis.
Afiliación
  • Evans DM; Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Småbråten DR; Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Holstad TS; Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Vullum PE; SINTEF Industry, 7491 Trondheim, Norway.
  • Mosberg AB; Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Yan Z; Department of Physics, ETH Zürich, 8093 Zürich, Switzerland.
  • Bourret E; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • van Helvoort ATJ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Selbach SM; Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Meier D; Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Nano Lett ; 21(8): 3386-3392, 2021 Apr 28.
Article en En | MEDLINE | ID: mdl-33861614
ABSTRACT
Dislocations are 1D topological defects with emergent electronic properties. Their low dimensionality and unique properties make them excellent candidates for innovative device concepts, ranging from dislocation-based neuromorphic memory to light emission from diodes. To date, dislocations are created in materials during synthesis via strain fields or flash sintering or retrospectively via deformation, for example, (nano)-indentation, limiting the technological possibilities. In this work, we demonstrate the creation of dislocations in the ferroelectric semiconductor Er(Mn,Ti)O3 with nanoscale spatial precision using electric fields. By combining high-resolution imaging techniques and density functional theory calculations, direct images of the dislocations are collected, and their impact on the local electric transport behavior is studied. Our approach enables local property control via dislocations without the need for external macroscopic strain fields, expanding the application opportunities into the realm of electric-field-driven phenomena.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Noruega

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Noruega