Your browser doesn't support javascript.
loading
Bacillus velezensis tolerance to the induced oxidative stress in root colonization contributed by the two-component regulatory system sensor ResE.
Zhang, Huihui; Liu, Yunpeng; Wu, Gengwei; Dong, Xiaoyan; Xiong, Qin; Chen, Lin; Xu, Zhihui; Feng, Haichao; Zhang, Ruifu.
Afiliación
  • Zhang H; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
  • Liu Y; Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
  • Wu G; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
  • Dong X; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
  • Xiong Q; Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
  • Chen L; Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China.
  • Xu Z; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
  • Feng H; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
  • Zhang R; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
Plant Cell Environ ; 44(9): 3094-3102, 2021 09.
Article en En | MEDLINE | ID: mdl-33864643
ABSTRACT
Efficient root colonization of plant growth-promoting rhizobacteria is critical for their plant-beneficial functions. However, the strategy to overcome plant immunity during root colonization is not well understood. In particular, how Bacillus strains cope with plant-derived reactive oxygen species (ROS), which function as the first barrier of plant defence, is not clear. In the present study, we found that the homolog of flg22 in Bacillus velezensis SQR9 (flg22SQR9 ) has 78.95% identity to the typical flg22 (flg22P.s. ) and induces a significant oxidative burst in cucumber and Arabidopsis. In contrast to pathogenic or beneficial Pseudomonas, live B. velezensis SQR9 also induced an oxidative burst in cucumber. We further found that B. velezensis SQR9 tolerated higher H2 O2 levels than Pst DC3000, the pathogen that harbours the typical flg22, and that it possesses the ability to suppress the flg22-induced oxidative burst, indicating that B. velezensis SQR9 may exploit a more efficient ROS tolerance system than DC3000. Further experimentation with mutagenesis of bacteria and Arabidopsis showed that the two-component regulatory system, ResDE, in B. velezensis SQR9 is involved in tolerance to plant-derived oxidative stress, thus contributing to root colonization. This study supports a further investigation of the interaction between beneficial rhizobacteria and plant immunity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacillus / Proteínas Bacterianas / Arabidopsis / Raíces de Plantas Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacillus / Proteínas Bacterianas / Arabidopsis / Raíces de Plantas Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2021 Tipo del documento: Article País de afiliación: China