Your browser doesn't support javascript.
loading
Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho.
Talwar, Shefali; Kant, Aayush; Xu, Tina; Shenoy, Vivek B; Assoian, Richard K.
Afiliación
  • Talwar S; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Kant A; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Xu T; Departments of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Shenoy VB; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Assoian RK; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: assoian@pennmedicine.upenn.edu.
Cell Rep ; 35(3): 109019, 2021 04 20.
Article en En | MEDLINE | ID: mdl-33882318
ABSTRACT
Reversible differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in vascular biology and disease. Changes in VSMC differentiation correlate with stiffness of the arterial extracellular matrix (ECM), but causal relationships remain unclear. We show that VSMC plasticity is mechanosensitive and that both the de-differentiated and differentiated fates are promoted by the same ECM stiffness. Differential equations developed to model this behavior predicted that a null VSMC state generates the dual fates in response to ECM stiffness. Direct measurements of cellular forces, proliferation, and contractile gene expression validated these predictions and showed that fate outcome is mediated by Rac-Rho homeostasis. Rac, through distinct effects on YAP and TAZ, is required for both fates. Rho drives the contractile state alone, so its level of activity, relative to Rac, drives phenotypic choice. Our results show how the cellular response to a single ECM stiffness generates bi-stability and VSMC plasticity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neuropéptidos / Adaptación Fisiológica / Proteína de Unión al GTP rac1 / Proteína de Unión al GTP rhoA / Miocitos del Músculo Liso / Mecanotransducción Celular / Músculo Liso Vascular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neuropéptidos / Adaptación Fisiológica / Proteína de Unión al GTP rac1 / Proteína de Unión al GTP rhoA / Miocitos del Músculo Liso / Mecanotransducción Celular / Músculo Liso Vascular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos