Your browser doesn't support javascript.
loading
Single-conflict colouring.
Dvorák, Zdenek; Esperet, Louis; Kang, Ross J; Ozeki, Kenta.
Afiliación
  • Dvorák Z; Computer Science Institute (CSI) Charles University Prague Czech Republic.
  • Esperet L; CNRS, G-SCOP Université Grenoble Alpes Grenoble France.
  • Kang RJ; Department of Mathematics Radboud University Nijmegen The Netherlands.
  • Ozeki K; Faculty of Environment and Information Sciences Yokohama National University Yokohama Japan.
J Graph Theory ; 97(1): 148-160, 2021 May.
Article en En | MEDLINE | ID: mdl-33888935
Given a multigraph, suppose that each vertex is given a local assignment of k colours to its incident edges. We are interested in whether there is a choice of one local colour per vertex such that no edge has both of its local colours chosen. The least k for which this is always possible given any set of local assignments we call the single-conflict chromatic number of the graph. This parameter is closely related to separation choosability and adaptable choosability. We show that single-conflict chromatic number of simple graphs embeddable on a surface of Euler genus g is O ( g 1 ∕ 4 log g ) as g → ∞ . This is sharp up to the logarithmic factor.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Graph Theory Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Graph Theory Año: 2021 Tipo del documento: Article