Theoretical Considerations for Next-Generation Proteomics.
J Proteome Res
; 20(6): 3395-3399, 2021 06 04.
Article
en En
| MEDLINE
| ID: mdl-33904308
While mass spectrometry still dominates proteomics research, alternative and potentially disruptive, next-generation technologies are receiving increased investment and attention. Most of these technologies aim at the sequencing of single peptide or protein molecules, typically labeling or otherwise distinguishing a subset of the proteinogenic amino acids. This note considers some theoretical aspects of these future technologies from a bottom-up proteomics viewpoint, including the ability to uniquely identify human proteins as a function of which and how many amino acids can be read, enzymatic efficiency, and the maximum read length. This is done through simulations under ideal and non-ideal conditions to set benchmarks for what may be achievable with future single-molecule sequencing technology. The simulations reveal, among other observations, that the best choice of reading N amino acids performs similarly to the average choice of N+1 amino acids, and that the discrimination power of the amino acids scales with their frequency in the proteome. The simulations are agnostic with respect to the next-generation proteomics platform, and the results and conclusions should therefore be applicable to any single-molecule partial peptide sequencing technology.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Proteoma
/
Proteómica
Límite:
Humans
Idioma:
En
Revista:
J Proteome Res
Asunto de la revista:
BIOQUIMICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Países Bajos