Your browser doesn't support javascript.
loading
Understanding the Variability in Graph Data Sets through Statistical Modeling on the Stiefel Manifold.
Mantoux, Clément; Couvy-Duchesne, Baptiste; Cacciamani, Federica; Epelbaum, Stéphane; Durrleman, Stanley; Allassonnière, Stéphanie.
Afiliación
  • Mantoux C; ARAMIS Project Team, Inria, 75013 Paris, France.
  • Couvy-Duchesne B; ARAMIS Lab, Brain and Spine Institute, ICM, INSERM UMR 1127, CNRS UMR 7225, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
  • Cacciamani F; CMAP, École Polytechnique, 91120 Palaiseau, France.
  • Epelbaum S; ARAMIS Project Team, Inria, 75013 Paris, France.
  • Durrleman S; ARAMIS Lab, Brain and Spine Institute, ICM, INSERM UMR 1127, CNRS UMR 7225, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
  • Allassonnière S; ARAMIS Project Team, Inria, 75013 Paris, France.
Entropy (Basel) ; 23(4)2021 Apr 20.
Article en En | MEDLINE | ID: mdl-33924060
ABSTRACT
Network analysis provides a rich framework to model complex phenomena, such as human brain connectivity. It has proven efficient to understand their natural properties and design predictive models. In this paper, we study the variability within groups of networks, i.e., the structure of connection similarities and differences across a set of networks. We propose a statistical framework to model these variations based on manifold-valued latent factors. Each network adjacency matrix is decomposed as a weighted sum of matrix patterns with rank one. Each pattern is described as a random perturbation of a dictionary element. As a hierarchical statistical model, it enables the analysis of heterogeneous populations of adjacency matrices using mixtures. Our framework can also be used to infer the weight of missing edges. We estimate the parameters of the model using an Expectation-Maximization-based algorithm. Experimenting on synthetic data, we show that the algorithm is able to accurately estimate the latent structure in both low and high dimensions. We apply our model on a large data set of functional brain connectivity matrices from the UK Biobank. Our results suggest that the proposed model accurately describes the complex variability in the data set with a small number of degrees of freedom.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Francia