Your browser doesn't support javascript.
loading
Clozapine affects the pharmacokinetics of risperidone and inhibits its metabolism and P-glycoprotein-mediated transport in vivo and in vitro: A safety attention to antipsychotic polypharmacy with clozapine and risperidone.
Liu, Xinghua; Sun, Heyuan; Zhang, Yumu; Sun, Yufei; Wang, Wenyan; Xu, Lixiao; Liu, Wanhui.
Afiliación
  • Liu X; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
  • Sun H; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
  • Zhang Y; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
  • Sun Y; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
  • Wang W; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China. Electronic address:
  • Xu L; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
  • Liu W; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
Toxicol Appl Pharmacol ; 422: 115560, 2021 07 01.
Article en En | MEDLINE | ID: mdl-33957192
ABSTRACT
Antipsychotic polypharmacy (APP), as one maintenance treatment strategy in patients with schizophrenia, has gained popularity in real-world clinical settings. Risperidone (RIS) and clozapine (CLZ) are the most commonly prescribed second-generation antipsychotics, and they are often used in combination as APP. In this study, the pharmacokinetics of RIS and CLZ in rats were examined after co-administration to explore the reliability and rationality of co-medication with RIS and CLZ. In addition, the effects of CLZ on RIS metabolism and transport in vitro were investigated. The results illustrated that in the 7-day continuous administration test in rats, when co-administered with CLZ, the area under curve and peak concentrations of RIS were increased by 2.2- and 3.1-fold at the first dose, respectively, increased by 3.4- and 6.2-fold at the last dose, respectively. The metabolite-to-parent ratio of RIS was approximately 22% and 33% lower than those of RIS alone group at the first and last doses, respectively. Moreover, CLZ significantly increased RIS concentrations in the brain (3.0-4.8 folds) and cerebrospinal fluid (2.1-3.5 folds) in rats, which was slightly lower than the impact of verapamil on RIS after co-medication. Experiments in vitro indicated that CLZ competitively inhibited the conversion of RIS to 9-hydroxy-RIS with the inhibition constants of 1.36 and 3.0 µM in rat and human liver microsomes, respectively. Furthermore, the efflux ratio of RIS in Caco-2 monolayers was significantly reduced by CLZ at 1 µM. Hence, CLZ may affect the exposure of RIS by inhibiting its metabolism and P-glycoprotein-mediated transport. These findings highlighted that APP with RIS and CLZ might increase the plasma concentrations of RIS and 9-hydroxy-RIS beyond the safety ranges and cause toxic side effects.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Antipsicóticos / Microsomas Hepáticos / Clozapina / Miembro 1 de la Subfamilia B de Casetes de Unión a ATP / Risperidona / Absorción Intestinal / Mucosa Intestinal Tipo de estudio: Etiology_studies / Risk_factors_studies Límite: Animals / Humans / Male Idioma: En Revista: Toxicol Appl Pharmacol Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Antipsicóticos / Microsomas Hepáticos / Clozapina / Miembro 1 de la Subfamilia B de Casetes de Unión a ATP / Risperidona / Absorción Intestinal / Mucosa Intestinal Tipo de estudio: Etiology_studies / Risk_factors_studies Límite: Animals / Humans / Male Idioma: En Revista: Toxicol Appl Pharmacol Año: 2021 Tipo del documento: Article