Your browser doesn't support javascript.
loading
Feasibility of predicting allele specific expression from DNA sequencing using machine learning.
Zhang, Zhenhua; van Dijk, Freerk; de Klein, Niek; van Gijn, Mariëlle E; Franke, Lude H; Sinke, Richard J; Swertz, Morris A; van der Velde, K Joeri.
Afiliación
  • Zhang Z; Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
  • van Dijk F; Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
  • de Klein N; Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
  • van Gijn ME; Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
  • Franke LH; Prinses Maxima Center for Child Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
  • Sinke RJ; Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
  • Swertz MA; Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
  • van der Velde KJ; Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
Sci Rep ; 11(1): 10606, 2021 05 19.
Article en En | MEDLINE | ID: mdl-34012022
ABSTRACT
Allele specific expression (ASE) concerns divergent expression quantity of alternative alleles and is measured by RNA sequencing. Multiple studies show that ASE plays a role in hereditary diseases by modulating penetrance or phenotype severity. However, genome diagnostics is based on DNA sequencing and therefore neglects gene expression regulation such as ASE. To take advantage of ASE in absence of RNA sequencing, it must be predicted using only DNA variation. We have constructed ASE models from BIOS (n = 3432) and GTEx (n = 369) that predict ASE using DNA features. These models are highly reproducible and comprise many different feature types, highlighting the complex regulation that underlies ASE. We applied the BIOS-trained model to population variants in three genes in which ASE plays a clinically relevant role BRCA2, RET and NF1. This resulted in predicted ASE effects for 27 variants, of which 10 were known pathogenic variants. We demonstrated that ASE can be predicted from DNA features using machine learning. Future efforts may improve sensitivity and translate these models into a new type of genome diagnostic tool that prioritizes candidate pathogenic variants or regulators thereof for follow-up validation by RNA sequencing. All used code and machine learning models are available at GitHub and Zenodo.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Análisis de Secuencia de ADN / Alelos / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Análisis de Secuencia de ADN / Alelos / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos