Your browser doesn't support javascript.
loading
Myosin light chain 2 marks differentiating ventricular cardiomyocytes derived from human embryonic stem cells.
Luo, Xiao-Ling; Zhang, Peng; Liu, Xiangyuan; Huang, Shiqian; Rao, Sen-Le; Ding, Qiurong; Yang, Huang-Tian.
Afiliación
  • Luo XL; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.
  • Zhang P; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.
  • Liu X; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.
  • Huang S; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.
  • Rao SL; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.
  • Ding Q; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.
  • Yang HT; Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, People's Republic of China.
Pflugers Arch ; 473(7): 991-1007, 2021 07.
Article en En | MEDLINE | ID: mdl-34031754
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great value for studies of human cardiac development, drug discovery, disease modeling, and cell therapy. However, the mixed cardiomyocyte subtypes (ventricular-, atrial-, and nodal-like myocytes) and the maturation heterogeneity of hPSC-CMs restrain their application in vitro and in vivo. Myosin light chain 2 (MYL2, encoding the ventricular/cardiac muscle isoform MLC2v protein) is regarded as a ventricular-specific marker of cardiac myocardium; however, its restricted localization to ventricles during human heart development has been questioned. Consequently, it is currently unclear whether MYL2 definitively marks ventricular hESC-CMs. Here, by using a MYL2-Venus hESC reporter line, we characterized a time-dependent increase of the MYL2-Venus positive (MLC2v-Venus+) hESC-CMs during differentiation. We also compared the molecular, cellular, and functional properties between the MLC2v-Venus+ and MYL2-Venus negative (MLC2v-Venus-) hESC-CMs. At early differentiation stages of hESC-CMs, we reported that both MLC2v-Venus- and MLC2v-Venus+ CMs displayed ventricular-like traits but the ventricular-like cells from MLC2v-Venus+ hESC-CMs displayed more developed action potential (AP) properties than that from MLC2v-Venus- hESC-CMs. Meanwhile, about a half MLC2v-Venus- hESC-CM population displayed atrial-like AP properties, and a half showed ventricular-like AP properties, whereas only ~ 20% of the MLC2v-Venus- hESC-CMs expressed the atrial marker nuclear receptor subfamily 2 group F member 2 (NR2F2, also named as COUPTFII). At late time points, almost all MLC2v-Venus+ hESC-CMs exhibited ventricular-like AP properties. Further analysis demonstrates that the MLC2v-Venus+ hESC-CMs had enhanced Ca2+ transients upon increase of the MLC2v level during cultivation. Concomitantly, the MLC2v-Venus+ hESC-CMs showed more defined sarcomeric structures and better mitochondrial function than those in the MLC2v-Venus- hESC-CMs. Moreover, the MLC2v-Venus+ hESC-CMs were more sensitive to hypoxic stimulus than the MLC2v-Venus- hESC-CMs. These results provide new insights into the development of human ventricular myocytes and reveal a direct correlation between the expression profile of MLC2v and ventricular hESC-CM development. Our findings that MLC2v is predominantly a ventricular marker in developmentally immature hESC-CMs have implications for human development, drug screening, and disease modeling, and this marker should prove useful in overcoming issues associated with hESC-CM heterogeneity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Cadenas Ligeras de Miosina / Miosinas Cardíacas / Miocitos Cardíacos / Células Madre Embrionarias Humanas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Pflugers Arch Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Cadenas Ligeras de Miosina / Miosinas Cardíacas / Miocitos Cardíacos / Células Madre Embrionarias Humanas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Pflugers Arch Año: 2021 Tipo del documento: Article