Your browser doesn't support javascript.
loading
Multigeneration Production of Secondary Organic Aerosol from Toluene Photooxidation.
Li, Yixin; Zhao, Jiayun; Wang, Yuan; Seinfeld, John H; Zhang, Renyi.
Afiliación
  • Li Y; Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
  • Zhao J; Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
  • Wang Y; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States.
  • Seinfeld JH; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
  • Zhang R; Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Environ Sci Technol ; 55(13): 8592-8603, 2021 07 06.
Article en En | MEDLINE | ID: mdl-34137267
ABSTRACT
Photooxidation of volatile organic compounds (VOCs) produces secondary organic aerosol (SOA) and light-absorbing brown carbon (BrC) via multiple reaction steps/pathways, reflecting significant chemical complexity relevant to gaseous oxidation and subsequent gas-to-particle conversion. Toluene is an important VOC under urban conditions, but the fundamental chemical mechanism leading to SOA formation remains uncertain. Here, we elucidate multigeneration SOA production from toluene by simultaneously tracking the evolutions of gas-phase oxidation and aerosol formation in a reaction chamber. Large size increase and browning of monodisperse sub-micrometer seed particles occur shortly after initiating oxidation by hydroxyl radical (OH) at 10-90% relative humidity (RH). The evolution in gaseous products and aerosol properties (size/density/optical properties) and chemical speciation of aerosol-phase products indicate that the aerosol growth and browning result from earlier generation products consisting dominantly of dicarbonyl and carboxylic functional groups. While volatile dicarbonyls engage in aqueous reactions to yield nonvolatile oligomers and light-absorbing nitrogen heterocycles/heterochains (in the presence of NH3) at high RH, organic acids contribute to aerosol carboxylates via ionic dissociation or acid-base reaction in a wide RH range. We conclude that toluene contributes importantly to SOA/BrC formation from dicarbonyls and organic acids because of their prompt and high yields from photooxidation and unique functionalities for participation in aerosol-phase reactions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tolueno / Compuestos Orgánicos Volátiles Idioma: En Revista: Environ Sci Technol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tolueno / Compuestos Orgánicos Volátiles Idioma: En Revista: Environ Sci Technol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos