De novo mutational signature discovery in tumor genomes using SparseSignatures.
PLoS Comput Biol
; 17(6): e1009119, 2021 06.
Article
en En
| MEDLINE
| ID: mdl-34181655
Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Análisis Mutacional de ADN
/
Mutación Puntual
/
Neoplasias
Límite:
Female
/
Humans
Idioma:
En
Revista:
PLoS Comput Biol
Asunto de la revista:
BIOLOGIA
/
INFORMATICA MEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos