Your browser doesn't support javascript.
loading
De novo mutational signature discovery in tumor genomes using SparseSignatures.
Lal, Avantika; Liu, Keli; Tibshirani, Robert; Sidow, Arend; Ramazzotti, Daniele.
Afiliación
  • Lal A; Department of Pathology, Stanford University, Stanford, California, United States of America.
  • Liu K; Department of Statistics, Stanford University, Stanford, California, United States of America.
  • Tibshirani R; Department of Statistics, Stanford University, Stanford, California, United States of America.
  • Sidow A; Department of Biomedical Data Science, Stanford University, Stanford, California, United States of America.
  • Ramazzotti D; Department of Pathology, Stanford University, Stanford, California, United States of America.
PLoS Comput Biol ; 17(6): e1009119, 2021 06.
Article en En | MEDLINE | ID: mdl-34181655
Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis Mutacional de ADN / Mutación Puntual / Neoplasias Límite: Female / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis Mutacional de ADN / Mutación Puntual / Neoplasias Límite: Female / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos