Your browser doesn't support javascript.
loading
Unification of sparse Bayesian learning algorithms for electromagnetic brain imaging with the majorization minimization framework.
Hashemi, Ali; Cai, Chang; Kutyniok, Gitta; Müller, Klaus-Robert; Nagarajan, Srikantan S; Haufe, Stefan.
Afiliación
  • Hashemi A; Uncertainty, Inverse Modeling and Machine Learning Group, Technische Universität Berlin, Germany; Machine Learning Group, Technische Universität Berlin, Germany; Berlin Center for Advanced Neuroimaging (BCAN), Charité - Universitätsmedizin Berlin, Germany; Institut für Mathematik, Technische Univers
  • Cai C; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; National Engineering Research Center for E-Learning, Central China Normal University, China.
  • Kutyniok G; Mathematisches Institut, Ludwig-Maximilians-Universität München, Germany; Department of Physics and Technology, University of Tromsø, Norway.
  • Müller KR; Machine Learning Group, Technische Universität Berlin, Germany; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany; Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea; Max Planck Institute for Informatics, Saarbrücken, Germany. Electr
  • Nagarajan SS; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA. Electronic address: Srikantan.Nagarajan@ucsf.edu.
  • Haufe S; Uncertainty, Inverse Modeling and Machine Learning Group, Technische Universität Berlin, Germany; Berlin Center for Advanced Neuroimaging (BCAN), Charité - Universitätsmedizin Berlin, Germany; Mathematical Modelling and Data Analysis Department, Physikalisch-Technische Bundesanstalt Braunschweig und
Neuroimage ; 239: 118309, 2021 10 01.
Article en En | MEDLINE | ID: mdl-34182100
Methods for electro- or magnetoencephalography (EEG/MEG) based brain source imaging (BSI) using sparse Bayesian learning (SBL) have been demonstrated to achieve excellent performance in situations with low numbers of distinct active sources, such as event-related designs. This paper extends the theory and practice of SBL in three important ways. First, we reformulate three existing SBL algorithms under the majorization-minimization (MM) framework. This unification perspective not only provides a useful theoretical framework for comparing different algorithms in terms of their convergence behavior, but also provides a principled recipe for constructing novel algorithms with specific properties by designing appropriate bounds of the Bayesian marginal likelihood function. Second, building on the MM principle, we propose a novel method called LowSNR-BSI that achieves favorable source reconstruction performance in low signal-to-noise-ratio (SNR) settings. Third, precise knowledge of the noise level is a crucial requirement for accurate source reconstruction. Here we present a novel principled technique to accurately learn the noise variance from the data either jointly within the source reconstruction procedure or using one of two proposed cross-validation strategies. Empirically, we could show that the monotonous convergence behavior predicted from MM theory is confirmed in numerical experiments. Using simulations, we further demonstrate the advantage of LowSNR-BSI over conventional SBL in low-SNR regimes, and the advantage of learned noise levels over estimates derived from baseline data. To demonstrate the usefulness of our novel approach, we show neurophysiologically plausible source reconstructions on averaged auditory evoked potential data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Magnetoencefalografía / Teorema de Bayes / Electroencefalografía Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Magnetoencefalografía / Teorema de Bayes / Electroencefalografía Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article