Your browser doesn't support javascript.
loading
Allosteric regulation in CRISPR/Cas1-Cas2 protospacer acquisition mediated by DNA and Cas2.
Long, Chunhong; Dai, Liqiang; E, Chao; Da, Lin-Tai; Yu, Jin.
Afiliación
  • Long C; School of Science, Chongqing University of Posts and Telecommunications, Chongqing, China.
  • Dai L; Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, China; Beijing Computational Science Research Center, Beijing, China.
  • E C; Beijing Computational Science Research Center, Beijing, China.
  • Da LT; Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai, China.
  • Yu J; Departments of Physics and Astronomy and Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California. Electronic address: jin.yu@uci.edu.
Biophys J ; 120(15): 3126-3137, 2021 08 03.
Article en En | MEDLINE | ID: mdl-34197800
Cas1 and Cas2 are highly conserved proteins across clustered-regularly-interspaced-short-palindromic-repeat-Cas systems and play a significant role in protospacer acquisition. Based on crystal structure of twofold symmetric Cas1-Cas2 in complex with dual-forked protospacer DNA (psDNA), we conducted all-atom molecular dynamics simulations to study the psDNA binding, recognition, and response to cleavage on the protospacer-adjacent-motif complementary sequence, or PAMc, of Cas1-Cas2. In the simulation, we noticed that two active sites of Cas1 and Cas1' bind asymmetrically to two identical PAMc on the psDNA captured from the crystal structure. For the modified psDNA containing only one PAMc, as that to be recognized by Cas1-Cas2 in general, our simulations show that the non-PAMc association site of Cas1-Cas2 remains destabilized until after the stably bound PAMc being cleaved at the corresponding association site. Thus, long-range correlation appears to exist upon the PAMc cleavage between the two active sites (∼10 nm apart) on Cas1-Cas2, which can be allosterically mediated by psDNA and Cas2 and Cas2' in bridging. To substantiate such findings, we conducted repeated runs and further simulated Cas1-Cas2 in complex with synthesized psDNA sequences psL and psH, which have been measured with low and high frequency in acquisition, respectively. Notably, such intersite correlation becomes even more pronounced for the Cas1-Cas2 in complex with psH but remains low for the Cas1-Cas2 in complex with psL. Hence, our studies demonstrate that PAMc recognition and cleavage at one active site of Cas1-Cas2 may allosterically regulate non-PAMc association or even cleavage at the other site, and such regulation can be mediated by noncatalytic Cas2 and DNA protospacer to possibly support the ensued psDNA acquisition.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Asociadas a CRISPR / Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas Idioma: En Revista: Biophys J Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Asociadas a CRISPR / Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas Idioma: En Revista: Biophys J Año: 2021 Tipo del documento: Article País de afiliación: China