Your browser doesn't support javascript.
loading
Finite-size shifts in simulated protein droplet phase diagrams.
Nilsson, Daniel; Irbäck, Anders.
Afiliación
  • Nilsson D; Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden.
  • Irbäck A; Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden.
J Chem Phys ; 154(23): 235101, 2021 Jun 21.
Article en En | MEDLINE | ID: mdl-34241264
ABSTRACT
Computer simulation can provide valuable insight into the forces driving biomolecular liquid-liquid phase separation. However, the simulated systems have a limited size, which makes it important to minimize and control finite-size effects. Here, using a phenomenological free-energy ansatz, we investigate how the single-phase densities observed in a canonical system under coexistence conditions depend on the system size and the total density. We compare the theoretical expectations with results from Monte Carlo simulations based on a simple hydrophobic/polar protein model. We consider both cubic systems with spherical droplets and elongated systems with slab-like droplets. The results presented suggest that the slab simulation method greatly facilitates the estimation of the coexistence densities in the large-system limit.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Suecia