Your browser doesn't support javascript.
loading
The fundamental thermodynamic bounds on finite models.
Garner, Andrew J P.
Afiliación
  • Garner AJP; School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria.
Chaos ; 31(6): 063131, 2021 Jun.
Article en En | MEDLINE | ID: mdl-34241324
The minimum heat cost of computation is subject to bounds arising from Landauer's principle. Here, I derive bounds on finite modeling-the production or anticipation of patterns (time-series data)-by devices that model the pattern in a piecewise manner and are equipped with a finite amount of memory. When producing a pattern, I show that the minimum dissipation is proportional to the information in the model's memory about the pattern's history that never manifests in the device's future behavior and must be expunged from memory. I provide a general construction of a model that allows this dissipation to be reduced to zero. By also considering devices that consume or effect arbitrary changes on a pattern, I discuss how these finite models can form an information reservoir framework consistent with the second law of thermodynamics.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Austria